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FLINK DATA TRANSPORT (LOGICAL)

Stream Partition

Subtask 1 L Subtask 3

Subtask2 "l Subtask 4

Abstraction over:

« Subtask output
- pipelined-bounded
— pipelined-unbounded
- Blocking

* Scheduling type
— all at once
— next stage on complete output
— next stage on first output

* Transport
~ high throughput via buffers
- low latency via buffer timeout



FLINK DATA TRANSPORT (PHYSICAL)
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FLINK DATA TRANSPORT (PHYSICAL)
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FLINK DATA TRANSPORT (PHYSICAL)
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CREDIT-BASED FLOW CONTROL




CREDIT-BASED FLOW CONTROL (FLINK 1.5+)
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CREDIT-BASED FLOW CONTROL (FLINK 1.5+)
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CREDIT-BASED FLOW CONTROL (FLINK 1.5+)

* Never blocks the TCP connection Checkpoint Duration

~ Better resource utilization with data
skew in multiplexed connections

2000

« Avoids overloading of slow receivers
(direct control over amount of buffered
data)

» Improves checkpoint alignment

ms

* cost: additional announce messages .
(piggy-bagged), B Without Flow Control

potential round-trip latency M With Flow Control



LOW LATENCY IMPROVEMENTS




NETWORK STACK (EXTENDED)
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FROM RECORD TO NETWORK
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FROM RECORD TO NETWORK
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BUFFER BUILDER & CONSUMER

* Producer-Consumer structure with lightweight synchronization

* append ()

rﬁ[h.ri‘flerﬂluiIlt:h;ar

-,

MemorySegment

* commit ()
= finish{)

wvala

BufferConsumer

* build () -
Buffer.readOnly
Slice()

Buffer

(wrapping MemorySegment)



LATENCY VS. THROUGHPUT

= low latency via buffer timeout

Throughput {recerds / slot / ms)
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CONNECTION TYPES




LOCAL VS. REMOTE CONNECTIONS

« Every (unchained) connection:
- Requires serialization
— Assembles serialized records into buffers
— Forwards a buffer when it is full or the buffer timeout hit

* Remaote connection:
— Sent via multiplexed Netty TCP connections (one per pair of tasks and task managers)
— As soon as a buffer is on the wire, it can be re-used
~ Allows credit-based flow control to control amount of buffered data

* Local connection:
— Direct connection between sender and receiver: buffers are shared
» No need for further flow control (buffered data = sender buffers)



TUNING OPTIONS




CREDIT-BASED FLOW CONTROL

* taskmanager.network.credit-model: true/false
* taskmanager.network.memory.buffers-per-channel: 2

* taskmanager.network.memory.floating-buffers-per-gate: 8

* Number of exclusive buffers should be enough to saturate the network for a full
round-trip-time (2 x network latency)

» #exclBuffers * segmentSize = round-trip-time * throughput
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CREDIT-BASED FLOW CONTROL

« Number of exclusive buffers too high

» higher number of required network buffers

= buffering more during checkpoint alignment

» BUT: faster ramp-up (before floating buffers kick in)
* Number of exclusive buffers too low

= times of in-activity during ramp-up
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BUFFER TIMEOUT

* StreamExecutionEnvironment#setBufferTimeout ()

« Affects every unchained connection: remote or local
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» Upper bound on latency for low throughput channels(!)

» Trade-off throughput vs. latency (see earlier)
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NETWORK THREADS

* netty.client.numThreads (default: number of slots)
* netty.server.numThreads (default: number of slots)

» May become a bottleneck if thread(s) are overloaded
« BUT: may also become an overhead if too many

» Do your own benchmarks and verify for your job!



USE LINUX-NATIVE EPOLL (FLINK 1.6+)

* taskmanager.network.netty.transport: AUTO | NIO | EPOLL

« EPOLL may reduce the channel polling overhead between user space and
kernel/system space

* There should be no downside in activating this or at least AUTO.

» Do your own benchmarks for your job!

* Please give feedback in ELINK-10177 so that we can decide whether to use
AUTO by default.



METRICS




NETWORK STACK METRICS

+ Backpressure monitor
- Web/REST UI, /jobs/:jobid/vertices/:vertexid/backpressure)

» [input, output]Queuelength

» numRecords[In, Qut]

* numBytesOut, numBytesin[Local, Remote]

* numBuffersOut, numBuffersin[Local, Remote] (Flink 1.5.3+, 1.6.1+)



LATENCY MARKERS

« ExecutionConfig#setLatencyTrackingInterval () (default: every 2s)

* Sources periodically emit a LatencyMarker with a timestamp

* These flow with the stream and properly queue behind records

* Latency markers bypass operators, e.g. windows

* Once received, they will be re-emitted onto a random output channel

* We create one histogram per source ¢ operator pair (window size: 128)

* source id.<sourceld>.source subtask index.<subtaskIdx>.
operator_ id.<operatorld>.operator_ subtask index.<subtaskIdx>

» 10 operators, parallelism 100 =9* 100 * 100 = 90,000 histograms!

https:foi.apache. org/projects/flinklink-docs-stable/monitoring/metrics himi#latency-tracking



COMMON ANTIPATTERNS




REPEATED KEYBY'S ON THE SAME KEY

keyBy (“location™)

.keyBy (*location®)
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» KeyedStream is not retained

~ UDF could have changed the key

« Additional keyBy() is necessary to gain access to keyed state, but:
— Prevents chaining
~ Adds an additional shuffle

» DataStreamUtils#reinterpretAsKeyedStream



CREDIT-BASED FLOW CONTROL (FLINK 1.5+)
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WHAT'S UP NEXT?




NETWORK SERIALIZATION STACK (FLINK 1.77)

« Serialization for broadcasts once per record, not channel

« Only one intermediate serialization buffer (on heap)
» significantly reduces the memory footprint

7 ™
. TaskManager 1
* see FLINK-9913
— Subtask 2
RecordWriter
L A




OPENSSL-BASED SSL ENGINE (FLINK 1.7?)

* Runs native code
* Uses advanced CPU instruction sets
» May reduce encryption/decryption overhead (needs verification)

* see FLINK-2816



MOVE OUTPUT FLUSHER TO NETTY

« Current implementation may have (GC) problems with many channels
» schedule the output flusher inside the Netty event loop

2000 outpul channels, Tms buffer imeout

L=l ]

* see FLINK-B625



THANK YOU!

@dataArtisans WE ARE HIRING
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