IMPROVING THROUGHPUT AND LATENCY
WITH FLINK'S NETWORK STACK

NICO KRUBER
SOLUTION ARCHITECT / SOFTWARE ENGINEER @ DATA ARTISANS,
APACHE FLINK COMMITTER

FLINK DATA TRANSPORT (LOGICAL)

Stream Partition

Subtask 1 L Subtask 3

Subtask2 "l Subtask 4

Abstraction over:

« Subtask output
- pipelined-bounded
— pipelined-unbounded
- Blocking

* Scheduling type
— all at once
— next stage on complete output
— next stage on first output

* Transport
~ high throughput via buffers
- low latency via buffer timeout

FLINK DATA TRANSPORT (PHYSICAL)

%

fTaskManager 1 & 4 TaskManager 5\"
Subtask 1 Buffer with Empty Subtask 3
Data in Queus Buffer
Buffer Pool Buffer Poaol
3 1
U TCP Connection "m
HI TS g ,.-| T 2 | []
EEOEEE
Y
Subtask 2 \\ Subtask 4
O 3 =] =B 10
00 4 2
Buffer Pool Buffer Poal

FLINK DATA TRANSPORT (PHYSICAL)

%

Subtask 1

(" TaskManager 1

Buffer Pool
3

N

Buffer with
Data in Queus

TCP Connection

. TaskManager ;\"
Empty Subtask 3
Buffer
Buffer Pool
|] | 1

Subtask 2

I .'|-“

Buffer Pool

3

4

— ..| mm 2 | [
i 1 e
' o
Backpressure \\ =it
L |
2
Buffer Pool

S

FLINK DATA TRANSPORT (PHYSICAL)

%

Subtask 1

Buffer Pool

(" TaskManager 1

Subtask 2

Buffer Pool

TCP Connection

TaskManager ;\"

Subtask 3

Buffer Poaol

Buffer Pool

S

CREDIT-BASED FLOW CONTROL

CREDIT-BASED FLOW CONTROL (FLINK 1.5+)

TaskManager 1

Subtask 2

Backlog

N

TCP Connection

S

TaskManager 2\'
Floating Subtask 4
Buffers
O
000
00

Exclusive guffer Poal
Buffers

CREDIT-BASED FLOW CONTROL (FLINK 1.5+)

5)/ _
announce backlog size

(" TaskManager 1 N 4
Subtask 2
TCP Connection
Chanmnel
Credit"“--q’ﬂ

Send buffers &

\ \ Un Inuunoed Ask for
E/ Crpdit floating
EEE 000

i = :
Backlog size
=

TaskManager ;‘"
Flm[-lng suhtESk 4
Buffers
00
000
00

Buffer Fool

k4

CREDIT-BASED FLOW CONTROL (FLINK 1.5+)

* Never blocks the TCP connection Checkpoint Duration

~ Better resource utilization with data
skew in multiplexed connections

2000

« Avoids overloading of slow receivers
(direct control over amount of buffered
data)

» Improves checkpoint alignment

ms

* cost: additional announce messages .
(piggy-bagged), B Without Flow Control

potential round-trip latency M With Flow Control

LOW LATENCY IMPROVEMENTS

NETWORK STACK (EXTENDED)

Il/:I' askManager 1 N 4 TaskManager _2\"
Zoom in
- Subtask1 = _ Subtask 3 = Hy
N
RecordWriter O O RecordReader
: ; 1 -
£ [TgP Connectior} | £ :
: onnectior _’%__,"I.El 2/
[man o Buffer Paol oo
L Subtask 2 Subtask 4 (Y
RecordWriter | .3 | 1 ..hRen:urdReader
— i "
T=a PP
EXCIED
\ o0 Bl y. \ Buffer Pool)

FROM RECORD TO NETWORK

T

Subtask 1

Write data &

StreamRecordWriter

p

take data &
remove buffer

Netty Server

getn R
hu%er

update writer inde“‘/,—-—
‘Z = L—
notify

i

new data

Buffer
Pool

FROM RECORD TO NETWORK

Subtask 1 O

take data &
Write data & update reader

update writer index ﬂ’g&x
StreamRecordWriter ‘Z g
[S

T

[
@
=
@

new data
C¥ Output b Buffer
" Flusher HijEin|
\ Pool

BUFFER BUILDER & CONSUMER

* Producer-Consumer structure with lightweight synchronization

* append ()

rﬁ[h.ri‘flerﬂluiIlt:h;ar

-,

MemorySegment

* commit ()
= finish{)

wvala

BufferConsumer

* build () -
Buffer.readOnly
Slice()

Buffer

(wrapping MemorySegment)

LATENCY VS. THROUGHPUT

= low latency via buffer timeout

Throughput {recerds / slot / ms)

5,000,000.00

4,000,000.00

3,000,000.00

2,000,000.00

1.000,000.00

0.00

0,00

sFlink1.4 sF

1,00

= high throughput through buffers

link 1.5

2,00
Buffer timeout

]
=
(=]

100,00

*100 nodes x 8 slots g

CONNECTION TYPES

LOCAL VS. REMOTE CONNECTIONS

« Every (unchained) connection:
- Requires serialization
— Assembles serialized records into buffers
— Forwards a buffer when it is full or the buffer timeout hit

* Remaote connection:
— Sent via multiplexed Netty TCP connections (one per pair of tasks and task managers)
— As soon as a buffer is on the wire, it can be re-used
~ Allows credit-based flow control to control amount of buffered data

* Local connection:
— Direct connection between sender and receiver: buffers are shared
» No need for further flow control (buffered data = sender buffers)

TUNING OPTIONS

CREDIT-BASED FLOW CONTROL

* taskmanager.network.credit-model: true/false
* taskmanager.network.memory.buffers-per-channel: 2

* taskmanager.network.memory.floating-buffers-per-gate: 8

* Number of exclusive buffers should be enough to saturate the network for a full
round-trip-time (2 x network latency)

» #exclBuffers * segmentSize = round-trip-time * throughput

Taskhanager 1 TashManager 2
BANOUNCE Ciedi
Subtask 2 Subitank 4
Channel
Credi Credit
[[R
Backlog size

Semd bislfers &
anmpune backlog siae

CREDIT-BASED FLOW CONTROL

« Number of exclusive buffers too high

» higher number of required network buffers

= buffering more during checkpoint alignment

» BUT: faster ramp-up (before floating buffers kick in)
* Number of exclusive buffers too low

= times of in-activity during ramp-up

TaskManager 1 TaskManagr 2
ENnounCe predit
Subtask 2 Sulitank 4
Channal Urannounced
Credit Credit
| oo J2
Backbog size

St bislfers B
anmpunoe backlog siae

BUFFER TIMEOUT

* StreamExecutionEnvironment#setBufferTimeout ()

« Affects every unchained connection: remote or local

Source; FakokahaSource -3 l/

Timastampe\Wassrmarks -5 De —
sadalzatan [Eri-Ti

/

HAZSH

WindawedAgprrgalicn PerLccation

Sink: NormalOulput

» Upper bound on latency for low throughput channels(!)

» Trade-off throughput vs. latency (see earlier)

Sink; LatelkataSink

NETWORK THREADS

* netty.client.numThreads (default: number of slots)
* netty.server.numThreads (default: number of slots)

» May become a bottleneck if thread(s) are overloaded
« BUT: may also become an overhead if too many

» Do your own benchmarks and verify for your job!

USE LINUX-NATIVE EPOLL (FLINK 1.6+)

* taskmanager.network.netty.transport: AUTO | NIO | EPOLL

« EPOLL may reduce the channel polling overhead between user space and
kernel/system space

* There should be no downside in activating this or at least AUTO.

» Do your own benchmarks for your job!

* Please give feedback in ELINK-10177 so that we can decide whether to use
AUTO by default.

METRICS

NETWORK STACK METRICS

+ Backpressure monitor
- Web/REST UI, /jobs/:jobid/vertices/:vertexid/backpressure)

» [input, output]Queuelength

» numRecords[In, Qut]

* numBytesOut, numBytesin[Local, Remote]

* numBuffersOut, numBuffersin[Local, Remote] (Flink 1.5.3+, 1.6.1+)

LATENCY MARKERS

« ExecutionConfig#setLatencyTrackingInterval () (default: every 2s)

* Sources periodically emit a LatencyMarker with a timestamp

* These flow with the stream and properly queue behind records

* Latency markers bypass operators, e.g. windows

* Once received, they will be re-emitted onto a random output channel

* We create one histogram per source ¢ operator pair (window size: 128)

* source id.<sourceld>.source subtask index.<subtaskIdx>.
operator_ id.<operatorld>.operator_ subtask index.<subtaskIdx>

» 10 operators, parallelism 100 =9* 100 * 100 = 90,000 histograms!

https:foi.apache. org/projects/flinklink-docs-stable/monitoring/metrics himi#latency-tracking

COMMON ANTIPATTERNS

REPEATED KEYBY'S ON THE SAME KEY

keyBy (“location™)

.keyBy (*location®)
: Sirk: NocmalOutpit
‘,--"'"-T—-'-"H _ AR
Source: FakKakaSource - J
e \ 4 Eé '\L(W&ﬁulhﬂlﬂhn
saialzalon e FASH
e —— . Sank: LateDataSink
FOEARD
» KeyedStream is not retained

~ UDF could have changed the key

« Additional keyBy() is necessary to gain access to keyed state, but:
— Prevents chaining
~ Adds an additional shuffle

» DataStreamUtils#reinterpretAsKeyedStream

CREDIT-BASED FLOW CONTROL (FLINK 1.5+)

(" TaskManager 1

Subtask 2

N

TCP Connection

" TaskManager ;\"
Flmﬂng Subtask 4
Buffers
00
== 000
[.

p— -
| LatencyMarker -—{—rj‘ "
- synchronization over

Buffers: #channels*2 + 8

IA for the output flusher!

A Buffer Pool
wey EEEE

WHAT'S UP NEXT?

NETWORK SERIALIZATION STACK (FLINK 1.77)

« Serialization for broadcasts once per record, not channel

« Only one intermediate serialization buffer (on heap)
» significantly reduces the memory footprint

7 ™
. TaskManager 1
* see FLINK-9913
— Subtask 2
RecordWriter
L A

OPENSSL-BASED SSL ENGINE (FLINK 1.7?)

* Runs native code
* Uses advanced CPU instruction sets
» May reduce encryption/decryption overhead (needs verification)

* see FLINK-2816

MOVE OUTPUT FLUSHER TO NETTY

« Current implementation may have (GC) problems with many channels
» schedule the output flusher inside the Netty event loop

2000 outpul channels, Tms buffer imeout

L=l]

* see FLINK-B625

THANK YOU!

@dataArtisans WE ARE HIRING

@ApaChE"F“ﬂk data-artisans.com/careers

